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We present a numerical technique to approximate the solution of a simplified model of 
turbulent combustion. The method, which is particularly suited for flows at high Reynolds 
number, uses random vortex element techniques coupled to a flame propagation algorithm 
based on Huyghens’ principle. We use this technique to analyze combustion in open and 
closed vessels. In the first experiment, we model a flame propagating in a swirling, viscous 
flow inside a closed square. Our results show the growth and development of counterrotating 
turbulent eddies and their effect on the flame. In the second experiment, we model turbulent 
combustion within a channel, in which flow enters through a slit at one end. Results detail the 
effects of exothermicity and viscosity on the speed and shape of the burning front. 

I. INTRODUCTION 

One problem in the study of internal combustion engines is to analyze the effect of 
turbulence on the propagation of a flame. The more reactants reached by the flame, 
the more energy released and the less unburnt fuel expelled at the end of a stroke. At 
high Reynolds numbers, turbulent eddies and recirculation zones form that affect the 
position of the flame and the distribution of unburnt fuel available for combustion. In 
this paper, we present a numerical technique to approximate the solution of a 
simplified model of turbulent combustion. We use this technique to analyze 
combustion in open and closed vessels. In the first experiment, we model a flame 
propagating in a swirling, viscous flow inside a closed square. Our results show the 
growth and development of counterrotating turbulent eddies and their effect on the 
flame. In the second experiment, we model turbulent combustion within a channel, in 
which flow enters through a slit at one end. Our results detail the effects of exother- 
micity and viscosity on the speed and shape of the burning front. 

Most partial differential equation models of turbulent flow are based on a 
formulation of the Navier-Stokes equations with respect to a mean state, together 
with a set of equations to include such components as turbulence velocity and length 
scales. These models are of varying degrees of sophistication and complexity, ranging 
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from zero-equation models (“mean-field closures”) to higher-order stress-equation 
models. For an excellent overview of these models, see [ 181. Equally complex models 
for turbulent flame propagation can be formulated, containing such effects as 
turbulent mixing, flame speed dependence on curvature, and flame wrinking. For a 
discussion of the theory of turbulent flows with premixed reactants, see [3]. 
Numerical approximations of these models usually consist of finite difference 
formulations of the appropriate equations. Although such techniques work well in 
many cases, the need for a fine grid in the boundary layer where sharp gradients exist 
and the intrinsic smoothing and numerical viscosity associated with finite differences 
place a computational upper bound on the size of the Reynolds number that can be 
effectively modeled. 

The random vortex method, introduced in [7], is specifically designed to deal with 
these problems. It is an approximation to the equations of viscous, incompressible 
flow at high Reynolds number that avoids the introduction of mean states and 
turbulence closure relations. It is important to point out that in our study we shall 
confine ourselves to two-dimensional flows, and this in fact constitutes a significant 
closure assumption that restricts our ability to study such three-dimensional effects as 
turbulent mixing. However, this is a limitation imposed by the vortex method 
described below, and does not apply to more general three-dimensional vortex 
methods, currently an area of active research. 

The flow is represented by a collection of vortex “blobs” that yield an associated 
velocity field. Viscous diffusion is simulated by a random walk imposed on the vortex 
motion. Normal boundary conditions are met through the addition of a potential flow 
solution, and tangential boundary conditions are satisfied by a vorticity creation 
algorithm (vortex sheets). By avoiding the averaging and smoothing associated with 
finite difference calculations, this technique allows us to follow the development of 
large-scale coherent turbulent structures within the flow. Of course, we do not gain 
something for nothing; our solution has become a probabilistic one in which the exact 
location of any particular vortex element has little meaning. This, however, is no 
different from what one expects for high Reynolds number flow; no two physical 
experiments will produce the same exact results (see [IS]). What we can hope to see, 
and indeed do, is the large-scale structure of the flow. The use of vortices to help 
identify coherent turbulent structures is physically reasonable, as pointed out in [ 191, 
and this technique has been applied successfully to flow past a cylinder [5], blood 
flow through heart valves [ 161, and turbulent mixing layers [ 11; theoretical 
investigations on questions of convergence and accuracy of vortex methods have been 
provided in [2, 11, 121. A review of vortex methods may be found in [ 141. 

To describe combustion within the flow, we use the thin flame model for infinitely 
fast kinetics, commonly used in the analysis of premixed turbulent combustion (see 
[ 31). This assumes an infinitely thin flame front, in which pressure fluctuations are 
neglected, the Mach number is assumed small, and combustion is characterized by a 
single-step irreversible chemical reaction taking place at a constant rate. A standard 
numerical approximation for such a model is to represent the flame front by a set of 
marker particles that move according to the equations of motion of flame 
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propagation. At each time step, interpolation through these markers provides an 
approximation to the position of the front. Because of the difficulty involved in 
accurately determining normals by this technique, the numerical approximation to the 
propagating front usually becomes unstable and develops oscillations. Furthermore, it 
has been shown [21] that the propagating front can develop cusps, similar to shocks, 
where the front is no longer differentiable and hence the normal direction is not 
defined. An alternate technique, introduced in [9], avoids these difficulties and 
capitalizes on the geometric nature of flame propagation described in [21]. A grid is 
imposed on the combustion domain and each cell is assigned a number corresponding 
to the amount of burnt fluid in that cell. At each time step, the position of the flame 
front can be reconstructed from these volume fractions. 

The above random vortex method and flame algorithm were first applied together 
to model turbulent combustion over a backwards-facing step [lo]. In modeling our 
problem of combustion inside vessels, we have made numerous improvements in these 
techniques. We use second-order time integration to advance the positions of the 
vortex elements, and show that such accuracy is desirable for our calculation. A fast 
Poisson solver is used to produce the potential flow needed to satisfy normal 
boundary conditions. We present an amended version of the flame algorithm that 
removes a bias discovered in the original scheme towards propagation in a particular 
direction. The calculation presented in [lo] “smears” the boundary between the burnt 
and unburnt regions; we modify the flame algorithm and the hydrodynamic 
calculation so that the front remains sharp. Finally, we present a technique to 
determine the exact location of the flame in each cell, as seen by the flame 
propagation algorithm. In the case where the flame front acts as a line source of 
specific volume, this allows us to devise, with the help of a fast Poisson solver, an 
accurate direct technique of determining the velocity field produced by expansion 
along the flame front. This is in constrast to previous algorithms that make use of 
volume source elements placed in the center of each cell undergoing combustion, 
regardless of the location of the flame in that cell. 

Although our model of turbulent combustion is an admittedly simple one, we 
believe that it can serve adequately in situations where one is interested in the 
interaction between high Reynolds number hydrodynamics and the speed and shape 
of the burning front. The results of our numerical experiments with the above 
algorithms show the effects of exothermicity and viscosity on the rate of combustion. 
We show that exothermic effects along the front increase the speed at which the flame 
travels through the domain, decreasing the amount of time required for the fluid 
within the vessel to become completely burnt. We show that viscous effects, on the 
other hand, both retard and accelerate flame advancement; although the turbulent 
eddies produced by the no-slip condition inhibit burning in corners and near solid 
walls, they also wrinkle the flame, increasing the surface area available for com- 
bustion. 

Section II details the assumptions and idealizations in our combustion model, and 
the mathematical formulation of the equations of motion. In Section III, we describe 
our numerical technique for modeling hydrodynamics, and apply it to a swirling fluid 
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impulsively started in a closed rectangle. In Section IV, we present the numerical 
scheme for following flame propagation, and use the combined algorithm to ignite 
our swirling flow. Finally, in Section V we present our technique for handling volume 
expansion along the front, and used this to model flame development in a channel. 

A. The Model 
II. THE COMBUSTION MODEL 

We consider two-dimensional, viscous flow inside a given region. On solid walls, 
we require that the normal and tangential velocities be zero. We make the following 
assumptions: 

(1) The fluid is a premixed fuel in which each particle can exist in one of two 
states, burnt and unburnt. When the temperature of an unburnt particle become 
sufficiently high, it undergoes an instantaneous change in volume due to heating and 
becomes burnt. The ratio of the density of a burnt particle to an unburnt particle 
depends on the mixture under study and is a prescribed constant. Thus, we regard the 
interface between the burnt and unburnt regions as an infinitely thin flame front, 
acting as a source of specific volume. 

(2) The front propagates at a fixed speed in a direction normal to itself into the 
unburnt fluid. The lower the ignition temperature, the faster the flame propagates. 

(3) Compressibility effects can be ignored, and sound waves travel infinitely fast; 
this balances pressure forces. 

In our model, the fluid motion affects the position of the flame and the exothermic 
expansion along the front influences the fluid velocity. As an illustration of this 
process, consider flow in a channel. Suppose we ignite this fluid near the inlet, i.e., 
raise the temperature beyond the ignition point. As surrounding particles are ignited, 
their resulting change in volume pushes the fluid. This exothermic velocity field, 
added to the underlying fluid flow, carries the fluid, together with the flame front, 
down the channel. 

In this model, we ignore variations in the flame propagation speed due to chemical 
kinetics, and disregard three-dimensional effects such as vortex stretching. 

B. Equations of Motion 

Let zi= (u, v) be the velocity of the fluid at a point (x, y). With the assumption of 
an infinitely thin reaction zone, we view the flame front as a curve y separating the 
burnt fluid from the unburnt fluid, where y(s, t) parameterizes by s the position of the 
flame front at time t. Thus, for each S, y(s, t) yields the coordinates (X,, YF) of a fluid 
particle that is “on fire” at time t. Let R be the Reynolds number and k the 
prescribed flame propagation speed. 

The fluid motion must satisfy the momentum equation for viscous flow (see [ 13]), 
namely, 

(2.1) 
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where D/Dt is the total derivative, P’= F(x, y) is the pressure, p =p(x, v) is the 
density, V is the gradient, and V2 is the two-dimensional Laplacian. We restrict p to 
two possible values: pu in the unburnt fluid and p,, in the burnt fluid. The boundary 
conditions for viscous flow are that u’= 0 on solid walls. The flow is incompressible 
on both sides of the flame front, hence V . u’= 0 in both the burnt and unburnt 
regions. However, along the front, where the fluid undergoes a volume expansions as 
it burns, the divergence is necessarily non-zero. 

We may derive an expression for the effect of this volume expansion on the fluid 
velocity by using the conservation of mass. Since @u) must be continuous across the 
front, 

Pu %, = Pb @,b (2.2) 

where ii,, and zinb are the velocities of the fluid normal to the front on the unburnt 
and burnt sides, respectively. The overbar denotes velocities taken relative to the 
moving front. Let u,, and unb be the normal velocities on the unburnt and burnt 
sides, and let S be the speed of the front, all taken in a fixed frame. Then, 

P”(%” - s> = Pb@,b - s)* (2.3) 

Solving for (u,, - u,~), we have 

The prescribed speed of propagation k plus the average of the normal velocities from 
the burnt and unburnt sides equals the observed speed, as seen from the fixed frame, 
thus across the flame front is a jump in normal velocity of strength 

(t&,-t+,)=2 /=I k. 
” b 

To describe the motion of the flame front itself, we note that, as seen from a fixed 
reference frame, the front is both carried by the flow and advanced normal to itself by 
the burning process. As a point (XFr Y,) on the flame front, the normal vector of unit 
length pointing toward the unburnt fluid is 

( 1 
((x,)f + (yF)9)l/2 

1 
((YF)S, -(XF)s) 

where the front is parameterized in such a way that the burnt region is on the left as 
we go along the front in the direction of increasing s. Thus, the motion of the front 
can be described by the system of partial differential equations 

ax, 
- = k(YF)s 

1 
at ((X,),’ + (YF)y2 + u(xF, ‘F) 

ayF 
- = -k(XF)s 

1 
at ((xF): + (yF):)l/2 + v(xF, yF)’ WV 
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Equations (2.1)--(2.8) characterize our model of flame propagation as a time- 
dependent free boundary value problem. 

III. HYDRODYNAMICS 

In this section we describe our numerical technique for approximating the solution 
to the hydrodynamic component of our combustion equations (2.1~(2.8). We shall 
follow the motion of vorticity, where vorticity is represented by a large number of 
discrete vortex elements spread throughout the domain. At each time step we will 
reconstruct the velocity field from the updated positions of the vortex elements. We 
consider flow inside a closed rectangle D with boundary 80. Since the flow is 
assumed incompressible in both the burnt and unburnt regions, we cannot allow 
volume expansion along the front in a closed vessel. Thus pU = pi,. This restriction 
removes the feedback mechanism through which the flame affects the fluid flow. In a 
later section, we will consider combustion in a partially open vessel and thus be able 
to include density variations. 

We take the curl of Eq. (2.1) to obtain the vorticity transport equation (see [ 131) 

(3.1) 

where the vorticity r = Vxii. We have used the fact that, with density constant 
throughout D, Vx(Vp7/p) = 0. Thus the flow is incompressible throughout D. 

Our technique will be to divide the domain into an interior region and a boundary 
layer. In both regions, we will use the technique of operating splitting to break the 
relevant equations into an advection equation plus a diffusion equation. The solution 
in the bouncary layer will then be matched to the one obtained in the interior to 
produce the full flow. 

In the interior, we solve the full vorticity transport equation in two stages. We first 
update the vorticity with respect to the advection component by solving 

a,r = -(ii. v)< 

v.ii=o 
(3.2) 

together with the boundary condition (~7. Z) = 0, where n’ is the unit vector normal to 
the boundary of the interior. We then update the vorticity with respect to the 
diffusion term by solving 

(3.3) 

Combining these two solutions will provide, to a tirst approximation, a solution to 
(3.1) in the interior. 

In the boundary layer, we use the Prandtl approximation to the Navier-Stokes 
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equations. This is derived from the assumptions that (1) vorticity is mainly produced 
from large gradients of u in the y direction, hence < = au/%x - c?u/@ z - ~u/&J, and 
(2) along the wall, the diffusion of vorticity is small compared to advection, hence 
a:< = 0. (Here, x and y are directions parallel and normal to the solid wall, respec- 
tively). As before, our solution is split into two stages. First, we update the vorticity 
with respect to the advection component by solving 

a,(=-(ii. V)< 
a,u+a,u=o. (3.4) 

We assume that the u velocity infinitely far from the wall is given, and require that 
both the normal and the tangential components of the velocity be zero along the solid 
wall. Second, we update the vorticity with respect to the diffusion term a:<. 

Finally, we shall need a matching technique to “glue” the boundary layer 
calculation to the interior calculation. The relevant equations in each region are 
shown in Fig. 1. 

Y 

t- 

aD 

z 

Interior Flow 

lntermr and Boundary Flows Matched 

Boundary Layer Flow 

Navier-Stokes Equations Split Into: 

1) Advection Equation: 

a,( = -(o.v)~ 

c = vxxa 

v.72 =o 

0 il = 0 oninterior boundary 

((z,y,t=O) known 

2) Diffusion Equation: 

Prandtl Boundary Layer Equations Split Into. 

(Bottom Side) 

1) Advection Equation: 

a,( = -(7PV)f 

f= -a,u 

Vd = 0 

It = 0 on aD (y=O) 

u(l!,y=-)= C/;(z) 

2) Diffusion Equation: 

FIGURE 1 
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A. Interior Flow: Advection 

We define a vortex blob of strength k, located at Xi = (xi, vi) to be a concentration 
of vorticity occupying a small region and giving rise to a stream function 

Q&log ri, Yi > (i 

ly,(iq = 

$ ~+logo-1 ) 
t ) 1 

7 ri = IX - Xi 1 (3.5) 
O<ri<CJ 

where u is the radius or “cutoff” of the blob. Associated with this stream function is a 
divergence-free velocity field (u,,,,~, v,,,,,~) = (-w,, w,); namely, 

(3.6) 

This is the velocity field for a vortex blob introduced in [7]; it represents a smoothing 
of the stream function v/ = log r associated with a point vortex in such a way that the 
velocities remain bounded as one approaches the center of the blob. Since this center 
should not move under the above velocity field, we set u = v = 0 if ri = 0. For details 
of this construction, see [7]. 

Our goal is to build the total vorticity distribution from a collection of vortex 
blobs. Assume that we are given an initial distribution of vorticity in D. We impose a 
grid on the domain, and place a vortex blob of strength ki at the center of each cell of 
the grid, where ki is the total amount of vorticity in that cell. Once this is done, we 
discard the grid; it plays no further role in our calculation. This collection of 
i = l,..., N vortex blobs produces a stream function w, where 

l&q = 5 ly&q. 
i=l 

The velocity field induced by this stream function is just 
velocity fields produced by each individual blob, hence 

Udx9 Y) = 5 uvor,i~ v,,,(x9 Y) = c 
i=l i=l 

(3.7) 

the superposition of the 

V vor,i* (3-g) 

Our distribution of vortex blobs represents an approximation to the vorticity at the 
initial time. We can easily amend the above velocity field so that it satisfies the 
boundary conditions by finding a function qpot such that V2qpot = 0 in D and 
&p,,JLM= -(il. ii) on 30. This will provide us with a velocity field 
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v%lt = o&t 7 pot u ) that is divergence-free, irrotational, and on the boundary exactly 
cancels the normal velocity component generated by the vortex blobs. Adding these 
two flows produces the required velocity field. 

All that remains is to update the vorticity distribution in time. We must solve a,< = 
-(u’. V)& which is equivalent to the statement that vorticity is advected by its own 
velocity field. Thus, we move each vortex blob (xi, yi) as follows: 

axi 
at - uvor(xi~ Yi> + Upot(Xi3 Yi), 

aYi 
at= u,,,(xi, .Yi) + Upot(Xi, yi). (3.9) 

Vorticity is conserved, since at any time we still have the same number of vortex 
blobs, each with its original strength. This is an attractive feature of vortex methods 
and is in direct contrast to finite difference methods that attempt to update the 
vorticity (or velocity) on a grid. In the latter technique, the error associated with the 
finite difference approximation can be significant and care must be taken so that 
vorticity is not “lost” on the grid. Regardless of the numerical technique chosen to 
solve the system of ordinary differential equations (3.9) and the potential flow 
problem, the errors arising from these approximations influence only the positioning 
of the vortex blobs, not the amount of vorticity. 

Our calculation proceeded as follows. We imposed a square grid on the 
combustion domain. Given a collection of N blobs at time step n located at (xl, yl), 
i= 1 ,..., N, we calculated the normal component of the velocity field at those points 
of the grid lying on the boundary. We used the NCAR PDE Package [24] to solve 
the Neumann problem for a harmonic function in the domain whose normal 
derivative along the boundary exactly canceled the component produced by the blobs. 
Differentiation of this function on the grid and linear interpolation produced the 
velocity field (U pot, upot) at any point. For the time integration (3.9) of the vortex 
blobs along their trajectories, Euler’s method was used in [7] and [lo]; we used 
Heun’s method, namely, 

Y $“’ = Yl + q {(%x(xl9 Yl) + Up&-I? Y;)) + (&&i*, Yi*) + up&i*, yi*)>) 

vi” = Yl + ~t[~“,,(xl9 Yl> + Upot(-q, Yl>l (3.11) 

where At is the time step and the subscript “ad? refers to the advection step. This 
technique is second-order accurate in time, as opposed to Euler’s method, which is 
first-order accurate. Such accuracy is desirable, since as vortex blobs come close 
together, they spin around each other. Since a first-order scheme merely takes the 
tangent at a given point and constructs a straight line approximation to the trajectory, 
the effect will be to spread out the vortices. Obviously, this spreading is lessened by 



434 JAMES SETHIAN 

the use of a higher-order scheme such as Heun’s method. A multitime level scheme 
cannot be used, since the time integration is split between advection and a random 
walk component; thus one cannot “reach back” in time to construct a scheme for the 
purely advective motion. 

As a test, we followed the motion of four vortices of equal strength and sign 
equally placed along a circle. It is easy to show that the vortices should revolve 
around the center. Using Euler’s method to follow the vortex motion resulted in 
significant spreading of the vortices. For any choice of time step, the spreading was 
reduced by the use of Heun’s method. Since Heun’s method requires two evaluations 
of the velocity field per time step, this can prove expensive when using the direct 
O(N*) method of calculating vortex interaction; however, in any case a higher-order 
time scheme is clearly indicated. The development of fast techniques to evaluate 
vortex interactions (particle in cell, local corrections) will undoubtedly ease the cost 
of such methods, however, we shall, for this work, confine ourselves to the direct 
method. 

B. Interior Flow: D@usion 

To update the vorticity distribution with respect to the diffusion term, we employ 
the technique of random walks. For the details of this construction, see [7]. Briefly, 
the technique is as follows. 

Suppose one wished to solve the initial value problem on the real line 

WI(X, t) = (l/R)w,,, w(x, 0) = 6(x) (3.12) 

where 6(x) is the delta function. The solution of this one-dimensional diffusion 
equation is the Green’s function w(x, t) = (rtxt/R)- “* exp(-(x*/(4t/R))), which 
corresponds to the probability density function associated with a Gaussian 
distribution with mean zero, variance 2t/R. Thus, one can “solve” (3.12) by 
constructing this function as follows: At t = 0 place N particles, each with mass l/N, 
at the point x = 0. Allow each particle to undergo a random walk along the x axis, 
with the length of each step (either positive or negative) drawn from a Gaussian 
distribution with mean zero, variance 2At/R, where At = t/l. After 1 steps, the position 
of each particle is just the sum of each of its displacements. For large N, the mass 
density distribution on the x axis has mean zero, variance (f@lt/R) = 2t/R, and 
approximates w(x, t). For more general initial data w(x, 0) =f(x), the random walk 
solution can be constructed by distributing N particles uniformly along the x axis, 
where the ith particle, located at xi, has mass f(xi)/N. Then, after allowing each 
particle to undergo 1 random steps drawn from a Gaussian distribution with mean 
zero, variance 2At/R, the mass distribution along the x axis at time t = I At will 
approximate w(x, t) for large N. 

For our problem, we wish to model the diffusion of vorticity (a,< = (l/R) V’r) in 
two dimensions. At each time step, we have a collection of vortex blobs, each with 
mass corresponding to the vorticity density at a point. If we let each blob undergo a 
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random walk in both the x and y direction, the combined motion of the blobs will 
approximate the solution to the vorticity diffusion equation. 

The combination of the solutions to the advection and diffusion equations produces 
our numerical algorithm for the solution of the Navier-Stokes equations in the 
interior: Given a collection of N vortex blobs at time ndt, their position at time 
(n + 1)dt is given by 

xi 
nt1 =Xntl 

iadv + Vi1 

where vi, and rli* are random variables drawn from the above Gaussian distribution. 
Two comments should be made at this point. First, the above algorithm for 

advection and diffusion avoids the problem of grid-generated “artificial viscosity” 
that can plague finite difference schemes. In such techniques, the error associated 
with the finite difference approximation to the flow looks like a diffusion term, and 
this “numerical” viscosity, which is a function of grid size, can overshadow the 
effects of real physical viscosity at high Reynolds number and thus place an artificial 
upper bound on the size of the Reynolds number that can be effectively modeled. 
Such spatially generated “artificial” diffusion is avoided by the vortex blob/random 
walk algorithm. The error associated with moving the vortex blobs along their trajec- 
tories, while not yet completely analyzed from a theoretical point of view, is 
presumably not of this type, and is minimized through the use of a higher-order time 
integration scheme. 

Second, it might seem that one must use a large number of particles to adequately 
model the diffusion. However, it is important to realize that we are modeling the 
diffusion of vorticity. In that case, the summation over the positions of the vortex 
elements to produce the velocity field at each time step corresponds to “integration,” 
and thus produces a smoother function. Consequently, not that many particles are 
required for an adequate representation: numerical experiments have shown that 
around 100 particles produce a reasonable approximation. 

C. Boundary Layer: Advection + Diffusion 

As stated earlier, we assume that vorticity within the boundary layer is mainly 
produced from large gradients of u in the y direction (r = -&lay). This is because of 
the “no-slip” condition that requires the velocity to vanish at the boundary. Vorticity 
is produced as the moving fluid grabs onto the solid wall. The boundary layer acts as 
a transition zone from the still fluid at the wall to the high speed flow in the interior 
as vorticity created at the solid boundary diffuses into the main flow. This is in 
contrast to flow in the interior ({ = VX~) where neither velocity component dominates 
the motion of vorticity. Consequently, it is inappropriate to use vortex blobs to 
discretize vorticity within the boundary layer, since each blob generates a radially 
symmetric rotation of fluid about its center. Instead, we make use of vortex “sheets,” 
which are surfaces parallel to solid walls across which the tangential velocity changes 
abruptly. For a complete discussion of the use of vortex sheets in the boundary layer, 
see [8]. Briefly, the idea is as follows. 
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We begin by expressing u in terms of the vorticity. Integration of r = 4,~ yields 

u(x, y) = u, + j” T(x, s> ds 
Y 

(3.15) 

where U, is the velocity at infinity as viewed from the wall. Since the flow is incom- 
pressible, we may derive an expression for v in terms of U, namely, 

u(x, y) = -ax j’ u(x, s) ds 
0 

(3.16) 

where we have used the fact that u(x, 0) = 0. We define a vortex sheet of intensity r, 
length h, centered at (x0, y,) to be a line segment of length h, parallel to the x axis, 
such that u(x, yO+) - U(X, y;) = -<. 

Given a vorticity distribution within the boundary layer, that is, a collection of i = 
l,..., N vortex sheets centered at (xi, yi) with strengths ri, we may approximate (3.15) 
by 

U(X, Y) = U, + ,JJ <idi 
Yi>Y 

(3.17) 

where the summation is performed over all sheets lying above y and di = max(O, 1 - 
Ix - xi//h) represents the fraction of the ith sheet lying over the point (x, y). Thus, the 
u velocity at each point is determined only by those sheets lying in a narrow vertical 
strip above (x, y). Similarly, we may approximate (3.16) by 

4x3 Y) = 
-(I+ -I-) 

h (3.18) 

where 

dt = max(O, 1 - 1 x f h/2 + xi J/h) 

JJT = min(y, Yj). 

Formulae (3.17) and (3.18) provide us with the velocity field associated with our 
vorticity distribution. We first update the vorticity with respect to the advection 
equation a,< = -(z-i. V)r by moving each sheet (xi, yJ according to (3.17) and 
(3.18). To update the vorticity with respect to the diffusion equation a,( = (l/R) a:(, 
we again use a random walk solution and allow each sheet to undergo a jump in the y 
direction, either positive or negative, with the size of the jump drawn from a 
Gaussian distribution with mean zero, variance 2Af/R. Note that diffusion takes place 
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only in the direction normal to the wall. The position of 
(n + 1) At is given by 

431 

the ith sheet at time 

(3.19) 

y;+’ = .Yl + $ [“i(xiv Yi) + ui(xTV YT)] + Vi (3.20) 

Xi* = Xl + At UI(Xi) yi)* 

YT = yl + At Ui(Xi, yi)* 

where (ui, vi) is the velocity of the ith sheet as determined from (3.17) and (3.18), 
and vi is the random jump. Again, we have used Heun’s method for the time 
integration. The value of this will be dicussed in the next section. 

All that remains is to satisfy the boundary conditions at the wall. We can easily 
satisfy the requirement that vorticity not be allowed to diffuse through the boundary 
by reflecting any sheet attempts to cross. To satisfy the no-slip condition that u = 0 
at y = 0, we create vorticity along the boundary as follows. At the beginning of each 
time step calculate the u component of the velocity along the wall at points spaced a 
distance h along the wall. If u is not zero at any point, create enough vortex sheets to 
provide a transition from the no-slip requirement to the value of U, and proceed with 
the algorithm using (3.19~(3.20). Though both u and Y will, by construction, be zero 
for each of these newly created sheets, the random walk term will diffuse them off the 
wall into the flow where they will join the other sheets. 

D. Matching of Interior and Boundary Layer Solutions 

To match the interior calculation to the boundary layer algorithm, we take the 
velocity component tangential to the solid walls produced by the vortex blobs as the 
free stream velocity seen at infinity by the boundary layer. This allows the interior 
calculation to determine the production of vorticity within the boundary layer. We 
transfer vorticity from the boundary layer to the interior by allowing those vortex 
sheets located a distance greater than 6 (to be determined later) from the wall to 
become vortex blobs. Conservation of circulation arguments show that a vortex sheet 
of strength < should transform into a blob of strength (h, where again h is the length 
of the sheet. Conversely, if a blob moves to a position less than 6 from a wall, it 
becomes a sheet with strength &,,,,,,/h. By taking S large relative to the variance of the 
steps, it is unlikely that a blob will move outside the domain in one time step; if this 
does occur, we throw the element away. 

We may summarize our algorithm for modeling the hydrodynamic part of the 
calculation as follows. Given at time IZ At a collection of vortex blobs and sheets: 

(1) Find C + tiPor for each blob (3.9). 
(2) Find the value of ti + @rot tangential to the boundary, and use this as the free 

stream velocity to compute (ui, vi) for each sheet. 
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(3) Create vorticity as needed to satisfy the no-slip condition by adding vortex 
sheets on the boundary. 

(4) Move sheets and blobs according to (3.19)-(3.20), with the stipulation that if 
a sheet moves into the interior, it becomes a blob andvice versa. 

We have yet to discuss out choices for u, the size of the core cutoff, and 6, the 
depth of the boundary layer. It has been shown, see [ 121, that u = h/n is an 
appropriate cutoff value. If we take 6 = 2 &6@, this will yield a boundary layer of 
appropriate scale O((R)-1’2) (see [20]), and the probability of any blob moving 
outside the boundary layer in one jump will be small. It is important to realize that 6 
represents a numerical boundary layer. It allows us to avoid the problem of vortex 
blobs too close to the wall, and provides a transition from sheets to blobs. 

We found that the use of a second-order time integration scheme for the vortex 
sheets was not worth the effort for two reasons. First, the advection field within the 
boundary layer is essentially a one-dimensional flow in a direction parallel to the wall 
and thus poses no great problem for a first-order scheme. The main component 
driving the sheets away from the wall is the diffusion term. Second, the implemen- 
tation of a second-order scheme is a very complicated procedure, since sheets may 
turn into blobs during the predictor step and thus must be treated differently. 

One final comment: At first glance it might seem that our approximation is not 
valid in the corners, since the Prandtl boundary layer equations break down there. 
However, since the size of the boundary layer is small compared to the length of the 
sheets, and since the free stream velocity provided by the vortices approaches zero 
near a corner (due to boundary conditions), a sheet will diffuse into the main flow 
and become a blob before it is carried into a corner. Thus, in the neighborhood of a 
corner, we are in fact solving the Navier-Stokes equations. 

E. Results 

In the first numerical experiment, we chose to model the “spin-down” of a high 
Reynolds number flow in a square region. This is similar to the driven cavity problem 
studied in [4] and [23]. With sides of unit length and R = 1000, we placed a vortex 
blob in the center of the square with strength such that the tangential velocity 
midway along each wall was initially equal to unity. We chose h = 0.1, that is, the 
length of each sheet was l/10 and sheets were created along each wall at intervals 0.1 
apart. The time step At was chosen to that At . Ur’/h < 1, where Uzx is the 
maximum tangential velocity to the wall generated by the vortices. A value of 
At = 0.05 was sufficient to ensure that no sheet was advected downstream a distance 
greater than its length during one time step. Finally, we chose a maximum amount 
&,,, = 0.2 of vorticity that any one sheet could carry; if more was needed to satisfy 
the no-slip condition, extra sheets of strength &,,,, were added. At the end of the 
calculation, there were about 400 blobs and 100 sheets per wall. 

In Figs. 2a, b, c, d we have displayed the velocity field on a 30 x 30 grid placed in 
the flow, where the magnitude of the vector at each grid point denotes the relative 
speed of the flow there. The fluid slows, due to the development of small coun- 
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terrotating eddies which grow in the corner, and diffuse downstream as small pockets 
of concentrated vorticity. This process occurs in all four corners; symmetry is to be 
expected in neither the numerical model nor in real physical situations, since these 
structures grow and develop from small perturbations and are somewhat random. In 
Figs. 3a, b, c, d we focus on flow in the lower right corner. Qualitatively speaking, the 
small counterrotating eddies form a recirculation zone that grows until it reaches a 
certain maximum size or energy level. When this level is reached, the structure breaks 
into smaller eddies that diffuse downstream and is replaced by another set of 
coagulating structures. 

Numerical experiments were performed for a range of time steps between 
At = 0.005 and At = 0.05, for maximum sheet strength &,,, between 0.05 and 0.2, 
and for h (the length of a sheet) between 0.05 and 0.1. In the coarsest calculation (the 
one shown), the recirculation patterns in each corner were made up of about 100 
vortices; in the finest calculation (&,,,, = 0.05, h = O.OS), the recirculation zone in 
each corner was made up of about 700 vortices. Through these ranges of values, the 
above mechanism of recirculation growth and breakup remained essentially 
unchanged. The sizes of the recirculation zones and the length of time they lasted 
before breaking up were about the same. For a coarser calculation (&,,,, = 0.5, 
h = 0.2), the situation was different; recirculation zones appeared and disappeared on 
the order of a few time steps. Clearly this was because not enough sheets were being 
created to adequately resolve the boundary layer; each sheet carried so much strength 
that when it become a blob it radically affected the flow. For this crude a calculation, 
numerical effects dominated. 

One would like to be able to make quantitative measurements of the above 
mechanism of eddy formation and breakup. On a large scale, one can clearly see the 
formation and decay of the recirculation zones. However, it is not at all clear what 
parameters (size? energy? vorticity?) should be used to measure this process. As 
such, it is no easy task to describe the mechanism in a detailed way, and thus one is 
hesitant to make conclusions about small-scale effects. In a later paper, we shall 
address the issue of devising a technique to quantify such phenomena. 

IV. FLAME PROPAGATION 

It has been shown, see [21], that our equations of flame propagations (2.7~(2.8) 
are analogous to hyperbolic systems of conservation laws. A front burning normal to 
itself can develop cusps, similar to shocks, where the front is no longer differentiable 
and the normal direction is not defined. This situation, plus an “entropy condition” 
implied by our model, poses serious and conceivably insurmountable difftculties for 
those numerical methods that attempt to use finite difference techniques to follow the 
motion of a front discretely parameterized by a set of marker particles. The technique 
we describe below, introduced in [9], avoids these difftculties and capitalizes on the 
geometric nature of flame propagation described in [ 211. 
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A. Numerical Algorithm 

We again use the technique of operator splitting to break the motion of the flame 
into a burning step and an advection step. To describe the burning step, consider a 
simple closed curve y such that all the particles inside y are burnt and those outside 
are unburnt. At t = 0, we ignite all the particles on y. Let D(t) be the union of all 
disks of radius kt with centers on y, together with the interior of y (called DJ. The 
position of the flame front at time t is given by the boundary of D(t); this is, of 
course, a construction based on Huyghens’ principle. An alternate way to produce 
D(t) is to let De(t) be the translation of the original region D, a distance kt in the 
direction (cos 0, sin 8). The union of all such possible translations as 0 ranges from 0 
to 27~ produces the expanded region D(t). Our numerical algorithm is an approx- 
imation of this construction. 

Assume, for the moment, that we possess an algorithm that will translate the given 
region D, in a given direction at a given speed (we shall discuss such an algorithm 
shortly) and consider the eight angles 8, = (I - 1) 7c/4, I= l,..., 8. If we form the eight 
regions Df’(At), each one being the translation of the original region D, a distance 
k At in the direction (cos B,, sin 13,), then the union of these regions together with the 
D, will approximate the burnt region at time At. 

The algorithm used in [9] to translate D, in the eight directions is the Simple Line 
Interface Calculation (SLIC) method [ 17 1. We impose a square grid i, j on the 
combustion domain, and assign a number fij, 0 < fij < 1, to each cell, corresponding 
to the fraction of fluid within that cell that is burnt. The algorithm moves the burnt 
region by drawing in each cell for which 0 < fij < 1 an interface which represents the 
boundary between the burnt and unburnt fluid. The orientation of the interface 
depends on the value offii in both the cell and its neighbors. The burnt fluid is then 
transported in the given direction, and a new set offii are created, approximating the 
burnt region translated a distance k At. 

Using this algorithm, we may move the front in a direction normal to itself to 
model burning. At time t = n At, we have an array of cell fractions&(n). Let f$(n) 
be the array of cell fractions obtained from moving the burnt region at time t in the 
direction 19,. Let f?(n) =fii(n). Then the burnt region at time (n + 1) At will be 
approximated by 

(4-l) 

This advances the front in a direction normal to itself a distance k At. 
To update the position of the flame relative to the advection term, we need only 

transport the new array fij, using SLIC, in the direction prescribed by the 
hydrodynamic calculation. 

We have made changes in the flame propagation algorithm used in [lo]. To tran- 
slate the burnt region in a direction not parallel to the x or y axis, SLIC decomposes 
the motion into a translation in the x direction (of the appropriate length), followed 
by a translation in the y direction. Numerical experiments on simple examples show 
that this does not necessarily give the same result as “sweeping” in the y direction 
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first, followed by x, because of the way in which interfaces are constructed. One 
possible solution, of alternating the order of the sweeps, was found to be ineffective. 
Instead, we perform both combinations and take as our new volume fraction in each 
cell the maximum of the two results. This preserves symmetry by removing a bias 
towards the x sweep present in earlier calculations. 

A further improvement was motivated by the observation that the flame front 
tended to spread out over many cells whenever vortices came very close to the 
boundary between burnt and unburnt fluid, creating a “band” several squares wide of 
partially burnt cells around the front. This was due to the fact that the velocity field 
produced by the hydrodynamic calculation was not numerically divergence-free on 
the grid used to advect the flame. Thus, the grid representation of the velocity field 
due to vortices near the flame front violated conservation of mass. The solution was 
to use the technique described in [6] to create a grid divergence-free field from the 
original one. Other techniques, such as evaluating the velocity field directly at the 
edge of the flame, will be investigated in later work. 

B. Results 

We modeled combustion within our closed square. We took a 60 X 60 grid of 
flame cells, and let k = 0.2, where k is the burning speed in (2.7~(2.8). 

In our first experiment, we assumed that the fluid was inviscid and thus omitted the 
random motion and ignored the production of vorticity by the no-slip condition; only 
the normal boundary condition was met. With a single vortex blob in the center 
representing a swirling, steady, inviscid flow, we ignited the cell located halfway up 
the left side (i.e., set its volume fraction equal to unity). We enforced continuous 
ignition, that is, if unburnt fluid was swept into this cell, it too was ignited. In Fig. 4, 
we show the results of the experiment. For the purposes of display, we have shaded in 
those cells for which fij > 0.2. As the flame burns in a direction normal to itself into 
the vessel, it is advected by the flow; the combined motion causes the flame to spiral 
in towards the vortex blob. In Fig. 4c, we see that the flame has wrapped around the 
center several times. In Fig. 4d, the unburnt region between the layers of the spiral is 
beginning to burn. This illustrates a central feature of our method; simply because 
two partially burnt cells are close doesn’t necessarily mean that the cells between 
them are burnt. We cannot overemphasize how much trouble this raises for those 
tracking algorithms based on connected marker particles. To advance the front due to 
burning, such techniques must use neighboring markers along the flame front to 
determine the normal direction. In the situation presented on Fig. 4e, it is not clear 
how the markers are joined. Thus, at each time step such a technique must “decide” 
how and which markers are connected, and eliminate those no longer on the 
boundary of the flame. This problem is avoided by this flame propagation algorithm. 

As a check of the accuracy of the flame algorithm, we performed the following 
calculation. After 2.255 seconds (Fig. 4e), the distance from the leading tip of the 
flame to the center of the square is zz 0.07. Since the flame is burning in towards the 
center at a constant rate (as well as being advected by swirling flow, of course), the 
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Inviscid Case 

0.00 0.38 0.75 1.13 1.50 1.88 2.25 2.63 3.00 

Time elapsed since ignition 

FIGURE 7 

distance from the front tip to the center is given by 0.5 - kt, where k is the flame 
speed and t is time. At t = 2.255 seconds, with k = 0.2 as in Fig. 4, the distance from 
the flame to the center should be 0.5 - (0.2)(2.255) x 0.05. 

We then repeated the experiment, choosing this time to ignite the fluid located in 
the ignition cell only once. Fluid swept into this cell at a later time was left 
unchanged. The results of this “sparked” ignition are shown in Fig. 5. The small 
patch of burning fluid (Fig. 5a) is carried into the lower left corner where the flow is 
slow enough so that burning dominates advection and the corner remains burnt 
(Fig. 5b). The flame spreads along the bottom wall, advected by the flow (Fig. 5c), 
and again spirals towards the center (Figs. 5d, e). 

In both calculations, we chose an initial time step of At = 0.05. The increase in 
advection speed as the flame burned towards the center eventually led to a violation 
of the time step requirement stated earlier. We then chose a smaller time step and 
continued the calculation, relining the time step whenever needed. A final time step of 
At = 0.01 was sufficient to allow the flame to fill the entire volume. 

In the final experiment, we ignited the viscous, swirling flow modeled in 
Section III. Here, we waited until t = 2.0 second before ignition so that back flow in 
the corners would have time to develop. The flame moves down the left side (Fig. 6a) 
where it encounters the first recirculation zone and is forced over the top of the large 
eddy located in the lower left corner. It is then pushed down against the bottom wall, 
where part of it is carried by the recirculation zone backwards into the left corner 
(Fig. 6b). As the front reaches the lower right corner (Fig. 6c), the same phenomenon 
occurs as the eddy first pushes the flame away and then grabs it from behind. 
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Because of the formation of time-dependent recirculation zones created by viscous 
effects, the flame front becomes jagged and wrinkled (Fig. 6d). This is in contrast to 
the smooth flame front presented in the inviscid case (Fig. 4d). In Fig. 7 we have 
plotted the fraction of the total volume that is burnt against the amount of time 
elapsed since ignition. The effect of viscosity can clearly be seen; after starting off 
close together, the top curve (viscous case) splits away from the bottom curve 
(inviscid case) as the viscous flame passes through eddies created by the no-slip 
condition on the walls. These eddies stretch and distort the boundary between the 
burnt and unburnt fluids, providing a longer flame front and hence more contact with 
unburnt fluid available for combustion. Around 1.5 seconds after ignition is the 
period of greatest change in burnt volume for the viscous case. After 2.12 seconds, 
99% of the volume is burnt in the viscous case compared to 76% in the inviscid case. 

V. EFFECTS OF EXOTHERMICITY 

In this section, we would like to allow for density differences between the burnt 
and unburnt gas and thereby include the effects of volume expansion along the flame 
front. As explained earlier, our model does not allow us to consider these effects 
inside a closed vessel, thus the numerical technique described below will only be used 
for open vessel calculations. However, in a later paper [22], we show that this same 
technique can be modified to handle more sophisticated models of combustion for 
closed vessels in which pressure changes are allowed. 

The effect of volume expansion along the flame front is reflected in the momentum 
equation 

and the continuity equation 

(5.1) 

(5.2) 

Since p is not constant across the front, the pressure term VF,p no longer vanishes 
when we take the curl of (5.1). Thus, vorticity is produced along the flame front by 
the jump in density. In this model, we shall ignore this production term and assume 
that Eq. (3.1) holds throughout the domain; we focus solely on the effects of the 
density jump on the continuity equation. 

A. Numerical Algorithm 
To approximate Eq. (5.2), we need to express the change in volume along the front 

in terms of our flame algorithm. For any given cell, let M” be the total mass of the 
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fluid in that cell at time n At, and let Vi and VE be the volumes of the unburnt and 
burnt fluid, respectively. Then, 

M”=p,V;:+p,V:: 

M n+’ =pt)v;:+l +p” v::+l. 

Let Afz”’ be the change in the volume fraction produced by the propagation of the 
flame due to burning (the combustion step). Sincehj measures the fraction (between 
0 and 1) of burnt fluid in the cell, then 

V ;:+l- V;:&Af~‘” 

V ;+’ - V; zz -A2 ,;Fr” 

where h2 is the area of the cell. If we let AM be the change in the total mass of the 
fluid contained in the cell, then 

AM=M”+’ - M” = h* Afr’“& - p,). 

Since Ap, the change in density, is given by AM/h2* we may approximate (l/p) 
(WW by 

+g= [@“+b,),*][A!gl@“-,,] =2 I=/ T. (5.3) 

If we use a staggered grid for the velocities (see Fig. S), then we may approximate 
(5.2) by 

UI - u, + u, - ub = 2 Pu-PI, Afprn 
I I 
~ - 

h Pu+Pb At 
(5.4) 

FIGURE 8 
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where u,(u,) is the velocity normal to the left (right) side, and u~(u,,) is the velocity 
normal to the top (bottom) side. As a check, we note that if the front is propagating 
parallel to either the x or y axis, then dj$““/dt = k/h, where k is the propagation 
speed, and (5.4) reduces to (2.4). 

The rest of this section is devoted to a discussion of how to find the exothermic 
velocity field accurately. In [lo], volume source blobs of strength corresponding to 
the amount of volume produced at each time step were placed in the center of each 
cell for which Af p”’ > 0. A potential flow was added to the velocity field induced by 
these sources to satisfy boundary conditions. One difficulty results from the 
placement of the source at the center of a cell undergoing combustion, regardless of 
the position of the flame in that cell; this causes an inaccurate calculation of the 
exothermic velocity at the front of the flame and accentuates the development of the 
“thick” flame front discussed earlier. We describe below a technique that avoids this 
problem by using information contained in SLIC to determine the exact location of 
the front -as seen by our flame propagation algorithm. By placing sources of volume 
along the front, and then extrapolating onto the grid used by SLIC, we may use a fast 
Poisson solver to determine the exothermic velocity field. 

To model the propagation of the flame in a direction normal to itself, our flame 
algorithm considers the effect of sweeping into a given cell the burnt fluid in each of 
its neighbors. The maximum of all these contributions is chosen as the new value for 
fij. Since only one of these neighbors is allowed to determine the new value, this 
means that the front can be viewed as propagating into the given cell from a 
particular direction. Thus, our technique for placing volume sources is as follows: for 
each cell we keep track of which neighbor was the “contributor,” and which of the 
possible shapes used by SLIC were involved in the horizontal and vertical sweeps of 
the “contributor” into the given cell. From these shapes, we place the volume source 
along the front edge of the flame as it sweeps into the cell. Although the full 
catalogue of all possible shapes and the possible ways they can influence the cell 

a 

Af,j=. lume source of strength 5 

Flame before burnmg at 3 

FIGURE 9 
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represents a formidable programming task, the computing time involved is minimal 
since the proper configuration can easily be found and evaluated. 

As a simple example, suppose the array of volume fractions before the burning step 
is as in Fig. 9a. With k = h = 1 and dt = 0.5, the contributor to the center square will 
be the cell directly on its left, and the shape of the flame as constructed by SLIC is 
the vertical front shown in Fig. 9b. The vertical front burns to the right a distance 0.5 
and the volume fraction increases from 0.3 to 0.8; thus we place a volume source of 
strength &pr” = 0.5 on the edge of the newly placed front. If instead we use a time 
step dt = 1, the placement changes slightly. Here, the flame moves out of the center 

FIGURE 10 
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cell and into the cell on the right a distance 0.3; it is there that we must place the 
volume source of strenght 0.7. (Note that the center cell acts as a contributor when 
we update the cell on its right, thus providing the “missing” 0.3.) 

When the contributor cell is diagonal to the cell being evaluated, we use the last 
sweep (either vertical of horizontal) to determine the placement of volume sources. In 
some cases there may be more than one volume source per cell. A catalogue of basic 
shapes (ignoring symmetries) and accompanying location for volume sources is given 
in Fig. 10. Here, we have assumed the left cell acts as the contributor for the cell in 
the center, and have shown the placement of volume sources for burning into the 
center cell. Those volume sources extending into the right cell are placed when that 
cell is evaluated. 

Given the location and strengths of these volume sources, they form the right-hand 
side of a Poisson’s equation for the exothermic velocity; that is, we want to find a 
function rp,,, such that 

v2rp,,,=2 Pu --!L-* 
I I 

Af Pn 
Pu+Pb At 

To use a fast Poisson solver on the grid provided by the flame cells, we need to find 
the proper discrete right-hand side corresponding to our volume sources. In the 
current calculation, we use the easiest possible method and simply linearly 
extrapolate the sources onto the grid. Admittedly, this may sacrifice some of the 
accuracy obtained by knowing the location of the flame, however, for a flat flame 
burning down a tube, this technique produces the exact constant flame speed 
(burning + advection), regardless of grid size. Such techniques as particle in cell, etc., 
may provide more effective ways of using the available information to accurately 
construct the appropriate right-hand side; we shall not explore their use here. The 
boundary conditions for this velocity field (u, u) = VP,,, require that the normal 
derivative of qvO, along solid walls be zero, and that 

(VP”,, -Z)=2 
I I 
z h2~/$-~r” 

” b id 
(5.5) 

The above is just an expression of the Neumann compatibility condition that volume 
produced within the interior must be allowed to leave through the exit. This velocity 
field, together with the hydrodynamic component, constitutes the advection field for 
both the flame and the vorticity calculation. 

B. Results 

We modeled turbulent flow in a channel to analyze the effect of exothermicity and 
viscosity on the speed and shape of the burning flame. The combustion domain was a 
rectangle, lying along the x axis, with sides of length 5. and height 1. Fluid entered 
the channel with uniform speed (LIentrance = 5.) through a slit at the left end. At the 
exit, we imposed Poiseuille flow. (See Fig. 11.) We used a 400 x 80 grid and chose a 
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time step At,,, = 0.1 for the vortices and dfname = 0.01 for the flame. As in 
Section III, we varied At,,,, &,,,, and h within the aforementioned range with little 
qualitative variation in results. Although a more physically realistic problem might be 
to include the effects of entrance vorticity on the flow, we wanted a simple 
configuration where we could isolate the interaction between vorticity generated in 
the corners, exothermic effects, and flame motion. 

In the first experiment, we show the effect of viscosity (Re = 1000) on the flow. In 
Figs. 12a, b, c, d we have shown the velocity vectors for the first fifth of the channel. 
After the flow enters through the slit (Fig. 12a), small counterrotating eddies build in 
the corners (Fig. 12b). These eddies grow larger (Fig. 12~) until they break off and 

Time = 2.36 

q a Viscous/No volume lnnsctd/Volume 

FIGURE 13 
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diffuse downstream (Fig. 12d). Long-time calculations show a continual process of 
eddy formation, growth, and diffusion. 

In the next set of experiments (Fig. 13), we detail the effects of volume expansion 
and viscosity on the flame’s motion. We ignited the fluid at the point (0,3/16). We 
chose this point so that we could study the interaction between the flame and the 
recirculation zones in the lower left corner; of course, ignition at a different point 
would produce different results. In the first run, we assumed an inviscid flow with 
pU = P,, = 1, thus there was no volume expansion along the front (Inviscid/No 
volume). In the second run, we let Re = 1000 and pU = ps = 1 (Viscous/No volume). 
In the third run, we assumed inviscid flow with pU = 1 and pi, = 0.2 (Inviscid/ 
Volume), thus there was a ratio of unburnt to burnt of p,,/p, = 5. In the last 
experiment, we combined both effects (Viscous/Volume). Results were checked by 
varying the grid size between 300 x 60 and 500 x 100 with little variation in the 
results. 

The results can be analyzed as follows. Without volume sources or viscosity, the 
flame moves smoothly through the flow. The addition of viscosity (Viscous/No 
volume) causes the flame to be caught up in recirculation zones in the corners and 
swept away from the boundary. The bottom side of the front becomes jagged as it is 
carried downstream by the eddies. The front tip of the flame is thrown forward by the 
recirculation eddies, and the front wrinkles in response to local variations in the flow 
introduced by diffusing vorticity. 

When viscosity is ignored and the fluid is allowed to expand upon burning 
(Inviscid/Volume), the results are quite different. The flame can easily burn up to the 
walls, and moves down the channel more quickly due to the advection field produced 
by volume expansion. Note that the front is smooth, reflecting the lack of turbulent 
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eddies. Finally, in the case where both density variations and viscosity are included 
(Viscous/Volume), the maximum amount of combustion occurs. The advection field 
associated with volume expansion carries the front into faster moving parts of the 
flow, and while viscosity keeps the flame away from the walls, it throws the tip of the 
flame downstream and wrinkles the front, increasing the amount of surface area 
available for combustion. In Fig. 14, we plot the fraction of burnt fluid in the first 
fifth of the channel against the time elapsed since ignition. To summarize, we may 
say that (a) exothermicity increases the rate of combustion and (b) while viscosity 
inhibits combustion near the walls, it increases burning in the interior. 
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